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Motivated by examples of erosive incision of channels in sand, we investigate the
motion of individual grains in a granular bed driven by a laminar fluid to give us new
insights into the relationship between hydrodynamic stress and surface granular flow.
A closed cell of rectangular cross-section is partially filled with glass beads and a
constant fluid flux Q flows through the cell. The refractive indices of the fluid and the
glass beads are matched and the cell is illuminated with a laser sheet, allowing us to
image individual beads. The bed erodes to a rest height #, which depends on Q. The
Shields threshold criterion assumes that the non-dimensional ratio 6 of the viscous
stress on the bed to the hydrostatic pressure difference across a grain is sufficient to
predict the granular flux. Furthermore, the Shields criterion states that the granular
flux is non-zero only for & > 6.. We find that the Shields criterion describes the
observed relationship &, oc Q'/2 when the bed height is offset by approximately half
a grain diameter. Introducing this offset in the estimation of 6 yields a collapse of
the measured Einstein number ¢* to a power-law function of § — 6. with exponent
1.75 £ 0.25. The dynamics of the bed height relaxation are described well by the
power-law relationship between the granular flux and the bed stress.

1. Introduction

The response of a granular bed to forcing by a fluid which flows through and
over the bed has been the subject of continuous inquiry for over a century (see, for
example Graf 1971; Yalin 1977). This phenomenon is at the centre of a wide range of
practical and fundamental problems. Predicting the granular flux for a known fluid
flow is important in understanding how beaches (Bailard 1981; Komar 1998), rivers
(Murray & Paola 1994) and deltas (Kenyon & Turcotte 1985; Parker et al. 1998)
evolve, mountains erode (Burbank et al. 1996) and landscapes form (Howard 1994).
Sedimentary records cannot be deciphered without a working understanding of the
combined fluid/granular (two-phase) flow (Blum & Tornqgvist 2000). The microscopic
details of the bed’s response to forcing by a fluid raise important fundamental
questions about the nature of fluid flow near a rough (Grass 1971; Jimenez 2004)
and/or permeable (Brinkman 1949; Beavers & Joseph 1967) wall, the motion of a
grain on a rough surface (Samson et al. 1999; Quartier et al. 2000), and the dynamics
of granular avalanches (Douady et al. 2002; Bonamy et al. 2002).
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Given some measure of the fluid flow intensity, we would like to predict the
granular flux from the properties of the granular material such as size, shape, friction
coefficient, bed packing, etc. An important aspect of the problem to consider first is
the onset of granular flow. Just as the surface of a granular pile driven by gravity
alone relaxes to the angle of repose (Jaeger, Liu & Nagel 1989), granular beds driven
by fluid flow are thought to be static below a certain threshold fluid flux. Several
empirical curves relating some measure of the fluid forcing at the onset of granular
flow to the grain properties have been proposed (Shields 1936; Vanoni 1964; Yalin
1977). Numerous experimental studies aimed at computing these curves (summarized
in e.g., Buffington & Montgomery 1997; Miller, McCave & Komar 1977) are difficult
to interpret since measured critical properties (such as the Shields parameter) vary
by as much as a factor of three from study to study. The disparate and subjective
definitions of the onset of granular flow are frequently blamed for the observed scatter
(Shvidchenko & Pender 2000; Paphitis 2001).

Even the existence of the threshold fluid forcing below which the granular flux is
identically zero is a subject of a lively ongoing debate (Graf & Pazis 1977; van Rijn
1989). When the flow is turbulent, the local bed forcing is stochastic (Papanicolaou
et al. 2001) and a strong case, supported by data, can be made for the presence of
a granular flux (albeit vanishingly small) for any mean value of the fluid forcing
(van Rijn 1989). The omnipresence of a granular flux poses a twofold problem. First,
an arbitrary threshold grain flux (Neill & Yalin 1969), dislodging rate (Shvidchenko
& Pender 2000), or dislodging probability (Dancey et al. 2002) must be introduced
to characterize the onset. Whereas the study of Graf & Pazis (1977) suggests that
the granular flux is exponentially small below some threshold driving, no systematic
attempt, to our knowledge, has been made to quantify the transition in the functional
dependence of the granular flux on driving. Secondly, the ever-present granular flux
results in the evolution of the surface packing. This ‘ageing’ or ‘armouring’ of the
granular bed leads to a decrease in the granular flux and an increase in the perceived
threshold for the onset of persistent granular flow (Charru, Mouilleron & Eiff 2004;
Paphitis & Collins 2005).

Even when the flow is laminar, the rough surface of the granular bed yields a
fluctuating local fluid stress, albeit deterministically related to the time-dependent
realization of the surface packing. Statistical methods are therefore necessary to
completely characterize the onset of granular flow. Because we expect the surface
packing to have a transient component, so will the granular flux. However, we expect
there to be a true threshold forcing below which there exist surface packings such
that the associated surface stress is insufficient to dislodge any grains. Under steady
pre-threshold forcing conditions, one such surface packing will eventually be realized
and the granular flow will cease. We are interested in predicting the value of the
threshold fluid forcing, the transient granular flux in pre-threshold conditions, and
the steady-state granular flux above the threshold. We would also like to establish
whether a single characteristic of the fluid forcing (such as the surface stress) is
sufficient to predict the steady-state granular flux.

Here we report our initial investigation of these questions in a cell partially filled
with transparent spherical glass beads driven by an index-matched fluid. The small
size of the cell and the grains and the high viscosity of the fluid ensures that the
particle Reynolds number is always less than ten. Adding small fluorescing tracers
and illuminating the cell with a laser sheet allows us to image directly all grains
in a vertical slice through the system. We can therefore simultaneously measure the
fluid and granular fluxes, the dimensions of the fluid filled region, and the granular
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FIGURE 1. (a) Schematic diagram of the experimental apparatus. (b) Sample image of the
refractive-index-matched beads in a plane away from the sidewalls. (¢) Side view of the
experimental apparatus. Solid line 1 is the initial profile of the granular bed after the
preparation steps (i)—(iii) are carried out. Dashed line 2 is a sketch of a typical profile of
the granular bed after the cessation of erosion, the profile is perfectly flat except near the ends.
The image region is located about 90 mm (130d) from the upstream end.

packing. This allows us to test theoretical predictions of the threshold condition and
the functional dependence of the granular flux on fluid driving. Our study may be
considered complementary to that of Goharzadeh, Khalili & Jorgensen (2005), who
examined the fluid flow near a granular bed using a similar set-up.

2. Experimental technique

As shown in figure 1, an enclosed cell with a rectangular cross-section is partially
filled with glass beads with diameter d = 0.70 4 0.05 mm, density p, = 2.5 g cm™"?
and index of refraction of n = 1.54. A peristaltic pump is used to generate a constant
fluid flux Q through the cell. The fluid is manufactured to have the same refractive
index as the glass beads and a dye is added which fluoresces with a peak intensity
at a wavelength of 565 nm when illuminated by light with a wavelength of 532 nm
(Siavoshi, Orpe & Kudrolli 2006). The hydrocarbon-based fluid (manufactured by
Cargille) has density p; = 1.026 g cm™"? and kinematic viscosity v = 0.243 cm?s™".

The granular bed is prepared using the following three steps. (i) We tilt the cell
vertically with the fluid input end at the bottom, allow the grains to come to rest;
and (ii) slowly set it down horizontally. This procedure fills the cell top leaving an
empty buffer space near the exit mesh (see figure 1c). (iii) Apply a small fluid flux to
create a small (3—4 grain diameters) uniform gap. Steps (i)—(iii) are repeated to create
the initial condition for all runs. We scanned the laser sheet across the initial bed
surface and verified that it was flat in the observation window of width to within half
a bead diameter. After the bed is prepared, the fluid flux is instantaneously raised
to some value Q and kept constant for the duration of each run. After traversing
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the pile’s surface, eroded grains fall out of the way into the empty buffer space
between the pile and the downstream mesh. Eventually, all granular motion ceases.
In such a rest state the profile is perfectly flat except in regions of order 2 cm near
the inlet and outlet meshes. We therefore suppose, and argue further below, that in
the flat region, which comprises at least a 20 cm portion of the cell, the fluid flow
profile is steady, laminar and independent of the downstream distance. We further
checked that systematically varying the initialization fluid flux to create different initial
bed heights did not change the final bed height. We observed that the final height
reached was the same to within a grain diameter, provided the initial bed height was
greater.

The range of fluid fluxes Q for which the rest state is reached is a function of the
cell filling fraction. If the cell filling fraction is high, the range of Q is rather small.
However, if the filling fraction is small, the quiescent bed does not have a flat region
when the rest state is reached. We therefore set the uniform bed level at roughly
22 mm.

A laser and cylindrical lens system, placed above the cell, illuminates a vertical
slice through the cell away from the sidewalls. Because the beads do not contain the
dye, they appear dark against a bright background fluid. A high-speed digital camera
with a resolution of 512 x 480 pixels records a sequence of images at a rate of 30-60
frames per second. A typical image of a vertical slice through the bed is shown in
figure 1(b). The image is truncated at a depth of about 15 mm (measured from the
top plate) below which the particles never move. The apparent size of a bead depends
on the distance of its centre from the illuminated plane. We are able to identify
all beads whose centres are within approximately 0.3d from the illuminated plane.
The height of the granular bed in every image is measured using an edge-detection
algorithm. We take the height of the granular bed to be the inflection point in a depth
profile of the pixel intensity averaged over the image width. This technique yields the
mean height of the bed in the observation window. Furthermore, the mean height is
averaged over 5 experimental runs to reduce statistical fluctuations, and remove any
variability in preparing the initial pile.

We verified that the bed height decreases monotonically away from the sidewalls
up to a distance of about 3.5 mm, beyond which it remains constant to within the
roughness scale of the granular bed. For all subsequent measurements we therefore
positioned the laser sheet 7 mm from the sidewalls. The imaged region is about
16 mm wide, and is located 90 mm downstream from the inlet mesh (see figure 1c).
Comparing the height data for experimental runs repeated under the same preparation
conditions, we observed the standard deviations to be less that one particle diameter.

The inlet and outlet ramps ensure a smooth flow of the fluid onto the granular
bed. After a process of trial and error, the height of the ramps (22 mm) was chosen
to be slightly lower than the height of the granular bed when the grains fill the cell
uniformly, forming a flat surface. The leading edge of the bed tends to align with the
top of the inlet ramp. If the bed is eroded below the upper edge of the inlet ramp, an
undesirable turbulent region can form behind it. Neglecting end effects is theoretically
justified because we find a relationship between the grain flux and the local viscous
shear stress in a region away from both ramps. In addition, we find that the final
rest height of the bed away from the ramps depends only on fluid flux Q and not on
the bed preparation or on the geometry of the ramps. Therefore, we maintain that
the ramps affect only the granular bed in their vicinity and do not influence the bed
height further than a certain distance £, downstream. To estimate ¢,, we identify the
length scale at which the width 8(x) of the Blasius boundary layer equals half the
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FIGURE 2. The horizontal granular velocity (v,) (bottom axis, circles), computed in the regime
when grains are rolling on the surface of a quiescent pile, averaged over the observation
window and a 1s time interval. The granular volume fraction ¢ is plotted with diamonds
(top axis). The vertical axis denotes the depth z measured from the cell’s top plate; z = 0
corresponds to the top plate; the bed’s surface is located where ¢ vanishes. The total granular
flux is proportional to the z integral of the product of (v,)¢.

fluid depth i . The characteristic flow velocity is U ~ Q/Wh, where W is the width
of the cell. Therefore
LU oy
v 4Wv
For the largest values of the flux Q and the fluid depth 2, in our experiment, the
length ¢, =~ 100d. Our use of the laminar flow profile in the window of observation
located 130d downstream from the inlet ramp is therefore justified.

To study the effect of bed-slope perturbations on its evolution, we also performed
the following experiments. We prepared the bed height with fluctuations of a few
grain diameters, and observed that the final rest height is smooth to within a grain
diameter. Thus the final heights do not appear to be sensitive to the initial slope
variation, provided the surface roughness does not cause eddies. Furthermore, we
varied the initial bed height, by varying the initial flow rate used for preparing the
surface; in all these cases we found that the final bed height was within a grain
diameter. Therefore we conclude that over the flow rates tested, the final bed height
depends on the final flow rate above it. These experiments also imply that if the width
were to be varied slightly, so that the flow also varies smoothly, then the bed height
would reach a height consistent with the flow rate at that cross-section.

To compute the vertical profile of the particle velocity and packing fraction we
measure the position of every particle in the image to within 0.1d using a centroid
technique (Tsai, Voth & Gollub 2003; Siavoshi et al. 2006). The velocity v, of
individual particles is then determined by tracking the particles over two successive
images. The image region is divided into horizontal bins of height 1d. The volume
fraction ¢ is determined by dividing the number of particles in each bin by the
volume of the bin (1d x 0.6d x 22d). The depth dependence of the bin-averaged
and time-averaged (over approximately 1s) velocity (v,) and volume fraction ¢ for
one particular flow rate is shown in figure 2. Above a certain depth, no grains are
detected in the bin, which yields a null packing fraction. Given the depth profiles
of the horizontal velocity and volume fraction, the grain flux g, (averaged over the

(2.1)
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FIGURE 3. (a) The average depth i, of the fluid layer above the granular bed. Solid lines are
a guide to the eye. (b) The rest depth £, of the fluid layer measured after cessation of granular
flow as a function of fluid flux Q. The dashed line is a fit to (3.2). The solid line is the same
fit with &, offset by roughly 0.4 mm. For reference, the fluid depth above the entrance ramp is
11 mm.

observation window) is obtained by computing the integral [(v,)¢ dz. Every reported
flux value represents the average over a time interval of 1 s within which the variation
in the flux values is small. All the experiments were repeated five times and the
reported values are the averages over these five runs.

Before the detailed analysis of the data, let us qualitatively describe the
phenomenon. Immediately after the fluid flow is switched on, the granular bed
experiences a brief period (a few seconds) of rapid shear flow during which several
grain layers are moving. The fluid gap increases rapidly during the shear-flow regime.
Subsequently, the granular flux is conveyed via ‘bed-load’, i.e. individual grains rolling
on the surface of an apparently quiescent bed. After several minutes, the granular flux
eventually vanishes. Because the erosion is gradual, the fluid gap increases gradually.
Thus, the bead shear stress decreases gradually and the bed (away from the ramps)
must approach a trivial flat state in which the fluid exerts a threshold shear stress on
the bed.

3. Rest height of the granular bed

Figure 3(a) shows the average depth of the fluid gap as a function of time for a
constant fluid flux Q over the bed. As the grains are eroded from the bed’s surface
and deposited into the buffer space, the fluid gap grows, and the mean fluid flow
speed and therefore the shear stress on the bed decreases. The erosion eventually
ceases and the fluid gap approaches a constant rest depth 4, which decreases with
the applied fluid flux Q.

The gradually increasing fluid gap and thus gradually decreasing bed stress leads to
the cessation of erosion precisely at the threshold. The variation of the rest depth #,
with the applied fluid flux Q allows us to examine the validity of the Shields threshold
criterion. We estimate the bed shear stress o assuming two-dimensional laminar flow
between infinite smooth parallel plates separated by /. This approximation is good
when the cell width W ~ 26 mm is much greater than the fluid gap depth 4. Using



Erosion of a granular bed driven by laminar fluid flow 53

the solution for laminar flow in a pipe of rectangular cross-section (see for example
Cornish 1928) we can compute the correction to the estimated bed stress. Neglecting
the sidewalls results in an underestimate of the stress by 8% for the smallest fluid
gap and by 29% for the largest fluid gap in our experiment. However, neglecting
the sidewalls has the advantage of a simple analytic expression for the bed stress
which greatly simplifies the analysis. The laminar flow assumption is good since the
cell Reynolds number for @ = 1000 cm*min™" is Re = vyemh /v = Q/Wv =~ 0.3,
where vy.q, 18 the horizontal fluid velocity averaged over the fluid gap. The Shields
parameter 6, defined as the stress o scaled by the hydrostatic pressure difference
(pg — py)gd across the grain, is

60v

0= —"", 3.1
Wygdh? (3-1)

where y = p,/py —1 ~ 1.437 is the density contrast. The Shields parameter measures
the relative importance of the destabilizing hydrodynamic forces and the stabilizing
gravity.

Assuming that the rest depth £, of the fluid gap corresponds to the Shields criterion
0 = 6., we obtain

172
h,=d (QQ> with Q, =6,

r

W)/gd3

= (3.2)

The fit to the measured rest depth (shown as a dashed line in figure 3b) is significantly
improved if a positive constant of approximately half a diameter d is introduced
into the right-hand side of (3.2) (an even better fit is obtained if h, ~ Q%%). The fit
yields Q, = 15.4 + 0.3 cm’min~!' which translates to the critical Shields parameter
of 6. = 0.30 + 0.01. This value is consistent with previously reported values, for
example, in Miller et al. (1977) or Buffington & Montgomery (1997). For comparison,
the Yalin parameter, & = (ygd*)!/?/v, a less widely used dimensionless group which
measures the relative importance of viscous and gravitational forces without reference
to the flow intensity, is  ~ 0.03 in our experiment.

The physical origin of the offset is not entirely clear to us at this time. The correction
to the bed stress estimate due to the sidewalls cannot be the source of the offset since
in the limit of small gap h,, the sidewall effect vanishes. A possible source of the
offset is the fluid boundary condition at a permeable wall which relates the derivative
of the fluid velocity to its magnitude at some penetration length scale £. Yet another
possibility is that the offset could be due to the way in which &, is measured. We use
the mean surface height to represent the mean boundary stress. In reality, however,
fluid flow past a rough permeable medium creates a distribution of bed stresses and
the estimate of its mean using a non-slip boundary condition at a flat wall is a gross
approximation. The fact that the error in the estimate of the mean stress translates
to a height offset that is only half a bead diameter is a pleasant surprise.

4. Flow rule

Tracking all grains in a vertical slice as mentioned in § 2 allows us to measure the
grain flux g, directly and to attempt to relate it to the estimated mean bed stress. In
general, other factors besides bed stress, such as the flow history, could influence the
grain flux. Although an unambiguous relationship between grain flux and bed stress
is usually tacitly assumed, here we test it directly.
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FIGURE 4. Einstein number ¢* vs. the excess 6 — 6, of the dimensionless shear stress. The solid
line is a power-law fit to the region 6§ — 6, < 0.3. The dashed line is a power-law fit with
A = 1.6 fixed.

Following convention (Einstein 1950), we use the Einstein number g¢* = g,/
(ygd?)'?, ie. the non-dimensionalized grain flux. Figure 4 is a plot of g* vs. the estim-
ated excess bed stress 6 — 6. computed using (3.1) with the value of 6, = 0.3 measured
in § 3. Different symbols correspond to different fluid fluxes Q. Because the same
bed stress occurs at different fluid gap depths for different QO and therefore entirely
different times in the history of the erosion process, data collapse suggests that only the
instantaneous bed stress (and not its history, for example) is required to predict the in-
stantaneous grain flux. Therefore, upon changes (in time or space) of the bed stress the
grain flux quickly relaxes to its corresponding value. We hypothesize from dimensional
considerations that the relaxation time scale is d?/v ~ 0.02 s, which is small indeed.

The data in figure 4 do not collapse for high stresses, i.e. early times, because small
fluid gaps are associated with changes in the mechanisms of granular transport. At
early times, the granular flux occurs primarily as bulk shear of the granular pile,
whereas later in the history of bed evolution, the grain flux is conveyed through
isolated grains rolling over the otherwise immobile granular bed. The latter form of
transport is known as the ‘bed-load’ regime. A power-law fit to the data collapse
yields

¢ ~AO—0) with 1=189+025 A=0.11+0.03. (4.1)

Our measured exponent A is slightly higher than the widely accepted value of 1.5
(Meyer-Peter & Miiller 1948), and also above the value of 1.6 found by Wong &
Parker (2000) in their reanalysis of Meyer-Peter & Miiller (1948). The pre-factor A,
however, is more than an order of magnitude smaller than that quoted by Wong &
Parker (2006) for turbulent flow. The large discrepancy suggests that although the
granular flux in the laminar fluid flow regime is described by the same functional
dependence on the Shields parameter as in the turbulent regime, the pre-factor is
not. The turbulent fluid appears to be significantly more efficient at entrainment and
transport of surface grains. This is perhaps not surprising since for the same mean
bed stress, the turbulent bursts provide a more effective dislodging process than the
smoothly varying bed stress in the laminar flow regime.
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5. Approach to rest height

The experimentally verified relationship between the bed stress and the granular
flux allows us to compute the entire history of the fluid gap depth h (x,?) (x is
the coordinate in the flow direction) as it approaches the rest depth 4,. The mean
thickness of the flowing grain layer is negligible compared to 4, in the ‘bed-load’
regime. Therefore, we write the conservation of sediment as

Ohy _ 94,

. 5.1
ot ox (3.1)

To study the approach of the profile to the rest height 4,, we introduce & = h,/h,,
scale all lengths by d, scale time by ./d/yg and use the flow rule (4.1) which can be
expressed as ¢* = A0Z(1/&2 — 1)*. Equation (5.1) can therefore be written as

9§

9 a
ot )

" (5.2)

Fel®) 3 =0, &)= 2240071 — g7y

Given an initial condition &(x, ty) = &y(x), the solution to (5.2) (obtained by the method
of characteristics) determines &(x, ¢) implicitly through &(x, #) = &(x — c(&(x, 1)) 1).

There are two issues which make the full solution of (5.2) difficult to use. First, a
possibility exists that the granular flux includes a term proportional to the gradient
of the bed height resulting in a diffusive term in (5.2). Our measurements of the bed
height are not sufficiently resolved to verify or reject such a diffusive term. Secondly,
the domain of applicability of (5.2) is limited in time and space. In the beginning of
the experiment, granular transport is mainly conveyed via bulk shear and thus does
not obey (4.1). Also, near the inlet ramp, the bed height may change rapidly and thus
the approximate expression for the shear stress (3.1) is invalid there. Fixing the initial
and boundary conditions for (5.2) is therefore not feasible. Thus, the full solution is
not useful.

However, the long-time asymptotic solution to (5.2) with a small diffusive term may
be insensitive to the initial and boundary conditions. Therefore, we seek a separable
solution to (5.2) in the limit & — 1 (i.e. nearly flat bed)

x—xg \ VOV
E(x,1)=1— (B(t—lb)) ; (5.3)

where xq and #y are integration constants and B = 1A(26,)*d/h,.

Because the height of the bed changes by less than a diameter along the cell, an
experimental test of the spatial variation in (5.3) is impractical in our set-up. We
therefore focus on the approach of the fluid depth averaged over the observation
window to the rest depth &, (cf. figure 3a). Equation (5.3) implies that once the fluid
gap depth £ is scaled by rest depth &, and time is scaled by £, /. /v gd, the data should
collapse onto a master curve which approaches unity as the power law (¢t — 5)"/!=%,
Figure 5 shows the data collapse. The power-law fit to the resulting data cloud yields
the offset time 7y & —2.2 h,/./ygd and the exponent 4 = 1.6+ 0.1. The predicted data
collapse suggests that the assumed functional relationship between the instantaneous
bed stress and granular flux is indeed correct. It is difficult to interpret the value of
to, since the asymptotic solution (5.3) applies only at long times. The fitted value for
4 falls just outside the lo interval of the value quoted in (4.1), but is consistent with
the value found by Wong & Parker (2006).
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FIGURE 5. Fluid gap depth scaled by the rest depth h, vs. time scaled by h,/,/ygd. The
solid line is a fit to a function that approaches unity as (f — 7,)"/'=? with 2 = 1.6 and
to = —2.2h,/./ygd. For comparison, we include a fit to a power law with 4 = 1.9 (dashed
line).

6. Discussion

In summary, we have revisited the well-studied problem of a sand bed driven
by an overlying viscous fluid. We focused on precise measurements in the laminar
flow regime where few data are available. Our flow geometry, in which the depth
of the fluid gap gradually increases as the grains are eroded, results in the cessation
of granular flow and thus allows for an unambiguous definition of the threshold
condition. Therefore, by varying the fluid flux Q through the cell, we have verified the
hypothesis that the boundary viscous shear stress is sufficient to predict cessation of
granular flow over the surface of a horizontal granular surface. The directly measured
value of the critical Shields parameter 6, = 0.30 4+ 0.01 and the Yalin parameter
E = 0.03 is consistent with the extrapolation of the previously reported values of 6,
to this value of E. The advantage of approaching the threshold from above is that
there is no ambiguity or subjectivity in its definition. On the other hand, a relatively
rapid approach to the quiescent state in our set-up precludes a thorough study of
the ‘armouring’ phenomenon. Finally, we remark that the threshold for the cessation
of granular flow may differ from that for the onset of granular flow. This effect is
difficult to quantify in general since the onset of granular flow is marked by transient
flow and steady driving is impossible in our cell since any erosion leads to a decrease
in driving.

We directly verified that the boundary shear stress determines not only the onset of
granular flow, but also the granular flux over a roughly horizontal bed in non-steady
driving conditions. This is an important result since it implies that the granular
flux quickly adjusts to changes in the driving. We have established the power-law
relationship between the grain flux and the excess boundary shear stress via two
independent measurements. We measure the granular flux directly by particle tracking
and, alternatively, we analyse the approach of the bed height to the quiescent state.
The average of the two independently measured exponents is 4 = 1.75 4+ 0.25. The
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pre-factor in the power-law relationship between the Einstein number and the excess
Shields stress is more than an order of magnitude smaller than that in the widely used
‘bed-load’ granular flux rule (Wong & Parker 2006), indicating perhaps a different
mechanism for the granular transport in the laminar fluid flow regime.

We have measured the parameters in the granular flux rule (4.1) not only for
a particular range of Reynolds numbers, but also for a particular type of grain —
smooth spheroids. How the parameters in (4.1) depend on the grain properties such
as shape, friction constant and roughness is an interesting and open question.

Lastly, we note that since the threshold condition in our experiment is reached
gradually, our problem is similar to the relaxation of a dry granular pile expressed in
terms of the angle of repose. Moreover, the concept of a Shields threshold, typically
defined via the onset of granular flow due to gradually increased fluid driving, may be
analogous to the notion that dry granular piles can be characterized by a maximum
angle of stability.

The work was funded by the Department of Energy grants DE-FG0202ER15367
(Clark), DE-FG0299ER15004 (MIT), and the National Science Foundation grant
number CTS-0334587 (Clark).
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